RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2017-20] B.A./B.Sc. THIRD SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018

Date : 24/09/2018 Time : 11 am - 1 pm PHYSICS (Honours) Paper : III

Full Marks : 50

$\frac{\text{Group} - A}{\text{Part} - 1}$ (Answer any two questions)

[2×5]

[5]

[2]

[2]

[3]

1. A sphere centred at the origin carries a charge density $\rho(\mathbf{r}, \theta) = K \frac{a}{r^2} (a - 2r) \sin \theta$ where *a* is the radius of the sphere and K is a constant. Find the approximate potential i.e. potential due to

monopole, dipole and quadruple moment, at a point on the Z-axis far from the sphere.

- 2. What do you mean by an electric dipole ? Determine the potential and field at an arbitrary point (r,θ) due to a dipole. [1+2+2]
- Derive an expression of energy for continuous change distribution. Then Calculate the energy of a conducting sphere of radius R with total charge q on it. [3+2]
- 4. a) What is Gauss's law in electrostatics ? Comments on the validity of Gauss's law. [1+2]
 - b) Two uniform infinite sheets of electric charge densities $+\sigma$ and $-\sigma$ intersect at right angles. Find the magnitude and direction of the electric field everywhere and sketch the lines of electric field.

<u>Group – A</u> <u>Part – 2</u> (Answer <u>any six</u> questions) [6×5]

- 5. a) What do you understand by ideal voltage source and ideal current source ?
 - b) Current is flowing radially from inner to outer spherical surface of two concentric spherical surfaces of inner and outer radii a and b respectively. The current density at a distance r(a>r>b)

is given by $\vec{J}(r) = J_0 \left(\frac{r^2}{a^2}\right) e^{-\alpha t} \hat{r}$, where J_0 and α are constant. Find the charge density at distance r

and time t.

6. State Thevenin's theorem. Determine the current through the 5Ω register in the circuit given below using Thevenin's theorem. [5]

7. Show that $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ (symbols have their usual meanings).

[5]

8.	A r acti	A rectangular current loop is placed in a uniform magnetic field B. Find the expression for torque acting on the coil.	
9.	Find the vector potential inside and outside of an infinite solenoid of radius <i>a</i> , current <i>I</i> with n turns per unit length.		[5]
10.	(a) (b)	Deduced the fundamental equation of a magnetic circuit. A solid toroid of iron of cross-sectional area $\pi \times 10^{-4}$ m ² and mean radius 10 cm. The relative permeability of the materials is $\mu_{\pi} = 5000$. If winding of 400 turns around the toroid carries a	[3]
		steady current of 1 <i>A</i> . Calculate the flux produced in the ring.	[2]
11.	The is a free	e region 1, described by $3x+4y \ge 10$, is free space, where as region 2, described by $3x+4y \le 10$ a magnetic material for which $\mu_r = 10 \ \mu_0$. Assuming that the boundary between the material and be space is current free, find B_2 if $\vec{B}_1 = 0.1\hat{x} + 0.4\hat{y} + 0.2\hat{z}$ Wb/m ² .	[5]
12.	Wh	at is meant by Hysteresis ? Find an expression for the work done due to Hysteresis.	[1+4]
13.	In a den	a magnetic material for which $\mu=3\mu_0$ and $\vec{H}=1\hat{x}+5\hat{y}-2\hat{A}/m$. Find (i) the bound current usity J_b and (ii) the surface current density.	[5]
$\frac{\text{Group} - B}{(Answer any two questions)}$			
		(Answer <u>uny two</u> questions)	[2~J]
14.	(a)	The barrier potential across the junction of a pn diode cannot be measured by placing a voltmeter across the diode terminals. Explain why ?	[2]
	(b)	What is a breakdown diode ? Discuss the origin of breakdown of a junction diode.	[3]
15.			
	(a)	Compare and explain the energy band diagram for an unbiased, forward biased and reverse biased pn junction diode.	[3]
	(a) (b)	Compare and explain the energy band diagram for an unbiased, forward biased and reverse biased pn junction diode. The current flowing through a pn junction Si diode is 50 mA for a forward bias of 0.8V at room temperature. Determine the static and dynamic resistance of the diode.	[3]
16.	(a) (b) (a)	Compare and explain the energy band diagram for an unbiased, forward biased and reverse biased pn junction diode. The current flowing through a pn junction Si diode is 50 mA for a forward bias of 0.8V at room temperature. Determine the static and dynamic resistance of the diode. Define ripple factor. Compare ripple factor for a half wave rectifier with that of a full wave rectifier.	[3] [2] [1+2]
16.	 (a) (b) (a) (b) 	Compare and explain the energy band diagram for an unbiased, forward biased and reverse biased pn junction diode. The current flowing through a pn junction Si diode is 50 mA for a forward bias of 0.8V at room temperature. Determine the static and dynamic resistance of the diode. Define ripple factor. Compare ripple factor for a half wave rectifier with that of a full wave rectifier. Explain how a single capacitor can be used to improve the dc output of a full wave rectifier.	[3] [2] [1+2] [2]

_____ X _____